Como resolver uma equação matricial

As equações matriciais são aquelas cuja incógnita é uma matriz. Confira diferentes exemplos como o passo a passo de como resolver esse tipo de equação!

Vamos juntos aprender como resolver todo tipo de equação matricial para garantir aquela questãozinha no Enem? Se liga que ao final da aula tem exercícios para fixar bem o assunto!

Na matemática, quando queremos descobrir o valor numérico de algo é muito comum colocarmos nosso problema em forma de equação. Elas funcionam muito bem, já que nos permitem fazer contas de forma rápida e organizada.

Com matrizes não é diferente. Podemos usar ferramentas parecidas com aquelas que utilizamos com números para resolver problemas de forma muito eficiente. Pode parecer um assunto complicado, mas não se assuste! Se você já estudou e fez exercícios envolvendo matrizes eu te garanto que já resolveu uma equação matricial.

Publicidade

Como resolver uma equação matricial

Quando resolvemos equações, nosso principal objetivo é encontrar o valor da incógnita, que usualmente chamamos de x. No contexto de equações matriciais essa incógnita vai ser uma matriz e normalmente será chamada de X.

De forma geral, o método de resolução para equações matriciais é o mesmo utilizado para equações envolvendo números reais: queremos usar as operações básicas com o objetivo de isolar a incógnita. Entretanto, o trabalho com matrizes envolve algumas regras específicas que vamos aprender nessa aula.

Para isso, utilizaremos alguns exemplos. Acompanhe comigo.

Exemplo: resolva a equação matricial A = X – B sendo

Matrizes

Para resolver a equação acima, primeiramente podemos substituir as matrizes A e B fornecidas pela questão para montar nossa equação matricial. Veja:

Exemplo de equação matricial

Quando o assunto é soma e subtração, trabalhamos da mesma forma que trabalhamos com números. Sendo assim, podemos somar e subtrair uma matriz de ambos os lados da equação – também conhecido como “mais passa menos” e “menos passa mais”.

Nesse caso, vamos passar a matriz B do lado direito para o lado esquerdo. Como ela está subtraindo o lado direito, ela vai passar somando o lado esquerdo. Dessa forma:

Soma de matrizes

Resolvendo essa soma de matrizes obtemos o valor de X:

Equação matricial

Importante: Não é porque estamos trabalhando com equações que podemos esquecer das regras de operações com matrizes! Se A e B fossem de ordens diferentes, a equação não faria sentido matemático. Isso porque não podemos somar matrizes de ordens diferentes.

Regras para a resolução da equação matricial

Fazer uma lista de todas as regras para operações envolvendo equações matriciais seria muito extenso. Vamos, então, focar naquelas que mais vão aparecer na resolução de exercícios de provas:

1- Não saia fazendo qualquer operação! Fique sempre atento(a) a ordem das matrizes com que você está trabalhando. Como visto acima, as matrizes envolvidas na equação precisam ter a mesma ordem.

2- Você pode somar e subtrair matrizes de ambos os lados de uma equação matricial:

A + B = 0

A + B – B = 0 – B

A = -B

Ou ainda:

A – C = B

A – C + C = B + C

A = B + C

3- Para facilitar a resolução de um exercício, você pode multiplicar ou dividir ambos os lados de uma equação matricial por um número:

Equação matricial

4- Você NÃO pode dividir ambos os lados de uma equação matricial por uma matriz.

5- Você pode multiplicar ambos os lados de uma equação matricial por uma matriz, desde que a multiplicação em ambos os lados exista e a multiplicação seja pelo mesmo sentido – pela esquerda pela ou direita:

B = C

AB = AC

BA = CA

6- Quando somar dois produtos de matrizes com uma matriz em comum, você pode deixar essa matriz em evidência, desde que ela esteja do mesmo lado em ambos os produtos:

AB + AC = A (B + C)

Ou ainda:

BA + CA = (B + C) A

Agora que sabemos quais regras seguir, vamos ver como elas aparecem em outros exemplos de exercícios.

Exemplos de exercícios com equação matricial

Agora que sabemos quais regras seguir, vamos ver como elas aparecem em outros exemplos de exercícios.

Exemplo 1

Resolva a equação matricial X + 2A = 3X + B onde

Matrizes A e B

Primeiramente, vamos montar a equação:

Equação matricial

Nessa equação temos mais elementos, inclusive alguns envolvendo a incógnita X. Da mesma forma que o exemplo anterior, podemos seguir os procedimentos para equação envolvendo números. Como sempre, queremos isolar a incógnita do resto da equação:

Equação matricial

Aqui, temos que lembrar que quando multiplicamos matrizes por um número estamos apenas multiplicando seus elementos por esse número, portanto:

Equação matricial

Pela regra 2, podemos dividir ambos os lados por um número. Sendo assim, dividindo ambos os lados por -2 chegamos em:

Equação matricial

Fazendo as contas devidas, obtemos:

Equação matricial

O próximo exemplo é um clássico e entender o raciocínio por trás da sua resolução é muito importante.

Exemplo 2

Calcule X dada a equação matricial AX = B onde Matrizes.

Se A, B e X fossem números, bastaria dividir ambos os lados por A e encontrar o valor de X. Entretanto, como sabemos pela regra 3, não podemos falar em divisão de matrizes. Um dos métodos para a resolução desse exercício vai se apoiar na multiplicação direta das matrizes A e X. Para isso, você vai precisar de uma matriz de incógnitas para entrar no lugar de X, ou seja:

Matriz xNesse caso, você teria que perceber previamente que a matriz X seria de ordem 2×1. Fazendo a análise do resultado utilizando seu conhecimento de multiplicação de matrizes, você deve lembrar que está multiplicando A (uma matriz 2×2) por uma X matriz e o resultado é uma matriz (2×1). Portanto, a ordem da matriz X será 2×1.

Sendo assim, precisamos calcular os valores de a e b para encontrar X. Montando a equação de matrizes, obtemos:

Multiplicação de matrizes

Fazendo a multiplicação de matrizes, ficamos com:

Multiplicação de matrizes

Para calcular a e b podemos, então, resolver o sistema:

Equação matricial

Que nos fornece resultado idêntico ao método anterior:

Equação matricial

Outro método para a resolução dessa questão se apoia no uso da matriz inversa.

Note que, se A possui inversa, podemos multiplicar ambos os lados pela inversa de A de forma a isolar X. Felizmente, como o determinante de A é diferente de 0, sabemos que A possui inversa, portanto:

A-1 AX = A-1 B

IX = A-1 B

X = A-1 B

Agora, basta calcular a inversa de A e o produto A-1 B. Calculando a inversa de A obtemos:

Matriz inversa

Substituindo A-1 e B na equação e em seguida fazendo o seu produto, obtemos:

Cálculo de matriz inversa

Exemplo 3

(UNESP-2014) Considere a equação matricial A + BX = X + 2C, cuja incógnita é a matriz X e todas as matrizes são quadradas de ordem n. A condição necessária e suficiente para que esta equação tenha solução única é que:

a) B – I ≠ 0, onde I é a matriz identidade de ordem n e 0 é a matriz nula de ordem n.

b) B é invertível.

c) B ≠ 0, onde 0 é a matriz nula de ordem n.

d) B – I é invertível, onde I é a matriz identidade de ordem n.

e) A e C são invertíveis.

Para resolver essa questão, precisamos saber qual das alternativas precisa ser verdade para obtermos uma resposta da forma (X = Expressão matricial). Para isso, vamos resolver a equação usando as técnicas que aprendemos até agora. Em seguida, tentaremos identificar qual das alternativas precisamos que seja verdadeira para chegar na resposta.

Vamos começar separando os termos da equação que possuem X:

A + BX = X = 2C

BX – X = 2C – A

Agora usamos a regra 5 para colocar X em evidência. Para isso, note X = I.X, dessa forma:

BX – IX = 2C – A

(B – I)X = 2C – A

Precisamos isolar a incógnita X que está sendo multiplicada pela matriz (B – I). Perceba que se (B – I) for invertível, podemos multiplicar ambos os lados pela sua inversa, seguindo a regra 4:

(B – I)-1 (B – I)X = (B – I)-1 (2C – A)

X = (B – I)-1 (XC – A)

Dentre todas as alternativas, aquela que precisamos que seja verdade é a letra D. caso contrário, não conseguiríamos multiplicar ambos os lados por (B – I)-1 e isolar a matriz X.

Videoaula

Antes de resolver os exercícios, confira a videoaula e, em seguida, resolva os exercícios:

Exercícios

1- (IMEPAC MEDICINA – 2016/2)

Sendo a equação matricial AX = B, em que

Matriz A e B

tem-se que a soma dos elementos da matriz X é:

a) -3

b) -1

c) 1

d) 3

2- (Unicamp-2018)

Sejam a e b números reais tais que a matriz satisfaz a equação A² = aA + bI,  em que I é a matriz identidade de ordem 2. Logo, o produto ab é igual a:

a) -2

b) -1

c)1

d) 2

3- (CESGRANRIO-2011)

Considere a equação matricial AX = B. Se Matrizes A e Bentão a matriz X é

a)

b)

c)

d)

e)

Gabarito:

  1. C
  2. A
  3. B

Sobre o(a) autor(a):

Essa aula foi preparada pelo professor Inácio Ávila. Inácio Ávila é graduando em matemática-licenciatura pela Universidade Federal de Santa Catarina.

Compartilhe: